

DTR is a World Leader in Gear Hobs and Milling Cutters.

- Unparalleled Quality
- Excellent Value
- Fast Delivery
- Superior Customer Service

CONTENTS

	Company History	05
	Gear Hob	06
	Standard Gear Hob	07
	STD Tooth Profile of Hob	08
	Roller Chain Sprocket Hob	09
	Timing Pulley Hob	10
	Parallel Side Spline Hob	
	Involute Spline Hob	
	Dry Cutting Hob	
	Worm Gear Hob	14
	Worm Wheel & Shaft	15
	Heavy Cutting Hob	16
	Built-up Hob / Carbide Hob	17
	Master Gear	18
	Gear Shaper Cutter	19
	Gear Shaper Cutter DIN Standard	2
	Broach Cutter	22
	PVD Coating Service	24
	Heat-treatment	
	Technical Information for Hobs	30
H	Ordering Information	30

DTR Offers More Advanced Technologies to Ensure Your Finished Product Delivers the Best Performance Possible.

PRODUCTS

- **STANDARD HOB**
- **MPRE-SHAVING HOB**
- **SERRATION HOB**
- **SPECIAL HOB**
- **BUILT-UP HOB**
- ∭ STUB HOB
- **MPRE-GRINDING HOB**
- **SPROCKET HOB**
- **TIMING HOB**
- **CARBIDE HOB**
- **M FELLOW STUB HOB**
- **INVOLUTE SPLINE HOB**
- **WORM HOB**
- **MATERIAL SPLINE HOB**

Company History

Mar 16. 1976 Dragon Precision Tools Co., Ltd. established. (Representative Director: Yong Bae Chun)

Jul 21, 1986 Awarded prize of successful case study by Maeil Economic Daily

Sep 11, 1987 Awarded prize of excellent domestic machinery development from the Ministry of Commerce&Industry of Korea (No.2299)

Jan 4, 1991 The headquarters and factory moved to new location in Namdong Industrial complex.

Oct 6, 1993 Appointed as an advanced technology company by the Production Technology Research
Institute under the Ministry of Commerce, Industry and Energy

Mar 26. 1996 Opened an on-site research institute.

Aug 10. 1996 Established a branch office in Nagoya, Japan

Nov 25. 1998 Won the bronze prize at the Convention for Promotion of Precision Industry (Accuracy technology specific) which was hosted by the Korea Institute of Industrial Technology

Jul 1. 1999 Opened a branch office in Osaka, Japan.

Nov 28. 2001 Appointed as a leading company for parts and materials export by the Ministry of Commerce, Industry and Energy

Aug 19. 2003 Appointed as a Venture Business (research and development business/ 1999 Korean Government)

May 17. 2004 Awarded Gold Statue order of Industry

Aug 11. 2004 Appointed as Promising Export Firm in 2002 and 2002 (the Small and Medium Business Administration)

Oct 26, 2005 Awarded Excellent Capital Based Products Development Company (the Minister of Commerce, Industry and Energy)

Jun 23, 2006 Appointed as Technological innovated small and medium business (INNO-BIZ / the Small and Medium Business Administration)

Jan 5. 2007 Obtained ISO9001/14001(Korea Testing Laboratory)

Nov. 2007 Appointed the best person in small and medium company (Yong Bae Chun, Korean SMEs)

Mar 17, 2008 Changed name to DTR CORPORATION

Jul 17, 2008 Opened a branch office in Chicago, IL U.S.A

Aug 21, 2008 Awarded Monthly Trade Executive for contribution to South Korea exports – Yong-Bae Chun, Chairman

Oct 27, 2009 Awarded Excellent Capital Based Products Development Company
(The Ministry of Knowledge Economy Minister)

Nov 30, 2009 Awarded for engaging in trade business

(President Jong-Youn Chun, the Ministry of Economic Knowledge)

Mar 3, 2010 Awarded for Excellent Taxpayer at 44th Tax-player's day (Prime Minister) - Yong-Bae Chun, Chairman

May 25, 2010 Established DTR USA Corporation in Chicago, IL U.S.A.

Sep 1, 2010 Appointed as outstanding entrepreneur of district (President Jong-Youn Chun)

Nov 14, 2011 Appointed as a Vision of Company in Incheon City

Feb 1, 2012 Established DTR Japan Co., LTD in Nagoya, Japan

Sep 6, 2012 Appointed as Inclined to be employed company 2012

Dec 10, 2012 Awarded World Best Products 2012(Ministry of Knowledge Economy Minister)

Jan 30, 2013 Appointed as Global Hidden Champion 2013(S&M-Sized Business administration)

Jun 20, 2013 Appointed Advanced Technology Center Business (ATC) support

Jul 31, 2014 Appointed KICOX Global Leading Company (Korea Industrial Complex Corporation)

Nov 30, 2015 Established DTR China Co., LTD in Jiang Jia Gang, China

Apr 30, 2016 Opened a branch office in Frankfurt, Germany

May 20, 2016 Awarded the 2016 Industrial Service Medal (President Jong-Youn Chun)

Gear Hob

Hob Nomenclature

Clearance of tooth bottom	CK=0.25m
Tip radius	r=Full-R, 0.3m
Pitch	nP=π·m
Tooth thickness	Sn=nP/2
Module	m
Pressure angle	PA=20°
Addendum	1.25m
Working depth	D+F=2.25m
Total tooth height	h=2.5m

Standard Gear Hob

Specifications

Unit: mm

Module	Diametral				Standard Hob			
М	Pitch DP	Out dia	Total Length	Bore dia	Hub dia	Hub Width	Bearing Face	N.T
1	24-22	50	50		34		(12)	
1.25	20	50	50		34	1	(12)	
1.5	18-16	55	55		36	1	(14)	
1.75	14	55	55			(14)		
2	12	60	60	22(22.223)	22(22.225) 36 38 38	1	(15)	
2.25	11	60	60			1	(15)	
2.5	10	65	65		38	1	(16)	
2.75	9	65	65		38	4	(16)	12
3		70	70		42	1	18	
3.25	8	70	70		42		18	
3.5		75	75		45	1	20	
3.75	7	80	75	27(25.4)	50		20	
4	6	85	80		52		20	
4.5	5.5	90	85		52		22	
5	5	95	90		52		22	
5.5	4.5	100	95		58		24	
6	4.5	105	100		60		25	10
6.5	4	110	110		60	5	28	
7	3.5	115	115	32(31.75)	60		28	
8	3	120	130		60		32	
9	2.65	125	145		60		36	
10	2.5	130	160		60	6	40	
11	2.25	150	175		60		44	
12	2.23	160	190		60	7	48	
13	2	170	200	40(38.1)	70		50	
14	1.75	180	210	40(36.1)	70	8	52	
15	1./3	190	220		74	0	54	
16	1.5	200	230		84	9	58	
18	1.5	220	250		94		62	9
20		240	270		94	10	65	
22	1.25	250	300	50(50.8)	94	12	68	
24		260	320		100	15	75	
25	1	270	320		100		80	
26		280	340			18		
28		300	360	60				
30		310	380					
32		320	410					
34		360	410			20		
35		370	420	80		20		8
36		380	440	80				ŏ
38		390	460					
40		400	480					

STD Tooth Profile of Hob

Standard Hob Tooth Profile

The way to produce gear	Uses
1. HOB FINISHING	STD, S-TOP, TOP HOB
2. HOB + SHAVING CUTTER + H.T	P, PSP, PP, PS HOB
3. HOB + (SHAVING CUTTER) + H.T + HON	PHP, PP, PH, PHSP, PHP, PHS, PH
4. HOB + H.T + GRINDING	PG, PGSP, PGP, PGS

Roller Chain Sprocket Hob

Ordering Specifications

- 1. Standard for chain(ASA-1, ASA-2, JUS-S, JIS-U, DIN, BS)
- 2. Pitch for chain
- 3. Roll diameter
- 4. No of chain
- 5. Specification for arbor which uses customer's machine.

Note: The measurement for standard DIN/BS (8180, 8187, 8188) is different so it needs to be specified when you order.

Tooth Profile

ASA II TYPE

Unit: mm

D	imension of chain sprock	cet	Hob dimension				
СР	RD	KS, ASA I, II	OD	Total Langth	Bore dia		
CF	ND	Chain No.	OD	Total Length	A type	B type	
6.35 (1/4")	3.30	RS25	60	60			
9.525 (3/8")	5.08	35	65	65	22	22.225	
9.525 (3/8")	6.35	35	65	65			
12.7 (1/2")	7.77 (Agricultural M/C)	41	75	75			
12.7 (1/2")	7.95 (Standard Industry)	40	75	75	27	25.4	
12.7 (1/2")	8.5(Autobicycle)	40	75	75		(26.988)	
15.875 (5/8")	10.16	50	85	90			
19.05 (3/4")	11.907	60	90	105			
25.4 (1")	15.875	80	110	125			
31.75 (1 1/4")	19.05	100	120	140	32	31.75	
38.1 (1 1/2")	22.225	120	130	170			
44.45 (1 3/4")	25.4	140	160	190			
50.8 (2")	28.575	160	170	210	40	38.1	
57.15 (2 1/4")	35.72	180	190	240			
63.5 (2 1/2")	39.688	200	210	260	50	F0.0	
76.2 (3")	47.625	240	240	310	50	50.8	
88.9 (3.5")	53.98	56B	280	310			
101.60 (4")	63.5	64B	300	350	60	63.5	
114.30 (4.5")	72.39	72B	320	390			

Timing Pulley Hob

Ordering Specifications

- 1. Belt specification (Pitch & Belt Type)
- 2. Belt maker's instructions
- 3. NT of pulley
- 4. Pulley profile (Detail View)
- 5. Hob dimensions (OD X L X d)

Note: When you order please provide the name of the belt maker because each manufacturer's tooth profile varies.

Even if the standard for the timing hob you request is the same tooth profile, it may be different according to the belt maker.

► Standard formula for pulley gear

 $m = CP \div \pi$

 $PCD = m \times Z$

 $OD = PCD - (CK \times 2)$

Timing Pulley Profile

	Timing Belt Profile	Belt Type	Common Use Ranges
		MXL(2.032)	10-23T, 24-R
	40°(50°)	XL(5.08)	10-R
S.T.D		L(9.525)	10-R
3.1.0	The Kat	H(12.7)	14-19T, 20-R
	6 6	XH(22.225)	18-R
	- 1	XXH(31.75)	18-R
		2M	
		3M	9-15T, 16-25T, 26-80T, 81-R
H.T.D	The form	5M	11-16Т, 17-31Т, 32-79Т, 80-200Т
п. і.		8M	18-27T, 28-40T, 41-89T, 90-200T
		14M	28-40T, 41-89T, 90-R
		20M	28-40T, 41-R
		2M	
		3M	16-25T, 26-80T
S.T.S		5M	19-22T, 23-28T, 29-39T, 40-69T
3.1.3		8M	18-23, 24-69, 49-120
		14M	28-36T, 37-51T, 52-100T, 100-200T
	! '	20M	
	50°	AT5	10-14T, 15-20T, 21-R
	1	AT10	12-15T, 16-20T, 21-R
(A.T)D.T		AT20	15-20T, 21-R
(A.1)D.1	* \	(D) T5	13-17T, 18-25T, 26-40T, 41-R
		(D)T10	12-15T, 16-20T, 21-45T, 46-114T
	' '	(D)T20	15-20T, 21-R
		2GT	16-25T, 26-80T
G.T		3GT	16-25T, 26-50T
G.1	\ \frac{1}{2} \	5GT	17-31T, 32-79T
		8GT	18-28T, 29-89T

Parallel Side Spline Hob

Ordering Specifications (D×d×B×N)

- 1. Out-diameter and tolerance for Parallel Side Spline(D)
- 2. Root-diameter and tolerance for Parallel Side Spline(d)
- 3. The width and tolerance for Parallel Side Spline(B)
- 4. No of tooth for Parallel Side Spline(N)
- 5. Amount of chamfer, grinding and LUG for Parallel Side Spline hob
- 6. Amount of grinding when it grinds during the process
- 7. Standard and type for Hob

Parallel Side Spline Hob can be divided into 1 type and 2 type. ex. As shown in the table below, it is divided into MAJ dia. and MIN dia.

Parallel Side Spline Hob Dimensions

Unit: mm

		Dimensio	n	Dimension of Spline																					
Disignation		Total	Total Bore		l Type					ΙΙΤ	ype														
_	Out dia	Length (L)	dia (D)	NT N	MIN dia d	MAJ dia D	width B	chamfer amount g	NT N	MIN dia d	MAJ dia D	width B	chamfer amount g												
11										11	14	3													
13	60	60	22							13	16	3.5													
16		00	(22.225)							16	20	4	0.3												
18										18	22	5	0.5												
21										21	25	5													
23					23	26	6	0.3		23	28	6													
26			27		26	30	6] 0.5		26	32	6													
28	75	75	(25.4)		28	32	7			28	34	7	0.4												
32			(23.1)	6	32	36	8		6	32	38	8													
36					ь	36	40	8		0	36	42	8												
42							42	46	10			42	48	10											
46	95	95			46	50	12			46	54	12													
52	93	95	32		58	14	0.4			52	60	14													
56	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115 (31.75)		56	62	14			56	65	14	
62	113	113			62	68	16			62	72	16	0.5												
72	135	125 175	175	175 40		40	75 40		78	18	18			72	82	18									
82			(38.1)				82	88	20	0.4		82	92	20											
92	145	190		,	92	98	22] 0.4		92	102	22													
32			27		36	6	6			32	32	6													
36	75	75	(26.988)		36	40	7			36	42	7	0.4												
42			(20.300)		42	46	8			42	48	8													
46				8	50	9	9		8	46	54	9													
52					52	58	10			52	60	10													
56	95	90			56	62	10			56	65	10													
62			32		62	68	12			62	72	12													
72			(31.75)		72	78	12	0.5		10	72	82	0.5												
82			(31.73)		82	88	12	0.5		82	92	12													
92	115	115	115		10	92	98	14		10	92	102	14												
102	115	113		10	102	108	16			102	112	16													
112					112	120	18			112	125	18													

Involute Spline Hob

Tooth Profile for Involute Spline Hob

A Spline gear is used when the power transmits in the same rotating direction. The tooth profile is an involute profile. The specification is needed when ordering, as each country has a standard which follows their module value.

▲Fitted surface of tooth ▲Fitted major-diameter

ex) Germany's industrial spline standard (pressure angle 30° ANSI B92.2: USA, inch system standard JIS/KS: D2001, B1603 standard)

Involute Spline Hob Tooth Profile

Involute Serration Tooth Profile

Unit: mm

Standard	Old JIS Tooth Profile D2001-1959	New JIS Tooth Pro ANSI B92. (meter s	2M-1980	0 ANSI B92.2-1980 (inch system)		DIN Tooth Profile DIN 5480-1964	
	Flat Root	Flat Poots Flat Poots Flat Poots		Flat Root	Filet Root		Flat Root
Terms	rial Kool	Flat Root	Fillet Root	riat Koot	DP≧16	DP≦12	riat Koot
Module/DP	m	m		DP/DPS			m
Standard Pressure Angle(α)	20°	30)°	30°			30°
Tooth Height(hk)	1.0m	0.75m	0.9m	1.35/DPS	2.0/DPS	1.8/DPS	0.6m
Cutting Length(WD)	1.2m	1.25m	1.4m	2.35/DPS	3.0/DPS	2.8/DPS	1.2m
Edge of Tooth(r)	0.3m	0.2m 0.4m		0.075/DPS	0.36/DPS	0.46/DPS	0.16m
Pitch(t)	πm	πm		25.4π/DP			πm
Tooth Thickness(s)	t/2	t/2	2		t/2		t/2

Tooth Profile for Involute Serration

Unit: mm

Standard Terms	Old JIS Tooth Profile D1602—1960	ANSI E	ofile B1603–1995 392_2M system)	ANSI B92.2-1980 (inch system)		
Module/DP	m			DP/DPS		
Standard Pressure Angle(α)	45°	37 . 5°	45°	37 . 5°	4.5°	
Tooth Height(hk)	0.5m	0.7m	0.6m	1.53/DPS	1.1/DPS	
Cutting Length(WD)	1.0m	1.15m	1.0m	2.53/DPS	2.1/DPS	
Edge of Tooth(r)	0.4476m	0.3m	0.25m	0.4/DP	0.327/Dp	
Pitch(t)	πm	πm		25.4π/DP		
Tooth Thickness(s)	1.3708m	t/2		t/2	1.3708/DP	

Dry Cutting Hob

Features

Characteristics

- Increased productivity: Special HSS and multi layer coating increases cutting ability by more than 2 times, compared to a conventional Hob
- Cost savings: Increased tool life and reduced cycle time lead to cost savings
- Environmentally friendly: Cutting oil is not used

Successful Results Require

• a quality Hobbing M/C for Turbo cutting.

Application

• Mass production of gears(high volume)

Comparison of Results in a Hobbing Test between PFAUTER and MITSUBISHI

1. Machine Used: PFAUTER & MITSUBISHI

2. Work Data

① Material: CM818H

② Gear Specification: M2.95 X PA20° NT62 HA33° width 28mm

Specif	ication	Conventional Hob	Dry Hob
	No of Start	4RH	4RH
	No of Teeth	NT16	NT16
	GL	∞	∞
	RA	8°	8°
Hob (PGS)	Material	PM	DHS2
(1 43)	Coating	TiN	T.V.C
	OD	90	90
	OAL	150L	150L
	Bore	31.75	31.75
	Rev	353	530
	Speed(M/Min)	Max. 100	170
2	Feed	2	3.2
Cutting Condition	Cutting Method	Climb Cutting	Climb Cutting
Condition	Shift	1.5	1.5
	Cutting Oil	Yes	No
	Cycle Time	90.78sec	37.79sec
Cutting	Amount	350ea	1,000ea
Woor	Amount	Wear : 0.15	Wear : VB 0.29
vvear	Amount	Crater : 0.20	Crater : 0.18

Worm Gear Hob

Ordering Specifications

A worm hob is designed based on the worm shaft specification. There are no standards for worm gear hobs. Generally this hob is manufactured as 'ZK' type. Since the overall dimensions of the hob are determined by the worm shaft and worm wheel data, please specify the following data when ordering:

- 1. Normal or axial module, DP
- 2. Out dia or pitch dia of worm
- 3. Worm lead angle
- 4. Number of threads and hand of thread
- 5. In case of shank type, shank standard
- 6. Contact ratio (Non-Standard): Standard contact ratio is generally 20~30%, and users can select either hole or shank type.
- CAVEX WORM It's different based on the tooth maker. Please discuss when you order.
- The out-diameter of hob is decided with out-diameter of worm and sometimes it's impossible to produce with an Arbor Type Hob.

When ordering a combination worm hob and arbor, please provide the arbor specification, taper of the hobbing machine, setting bolt standard and hob rotating direction.

In addition specify whether the contact of the arbor is right or left.

Selection Graph for Worm Hob

Worm Wheel & Shaft

Worm Wheel & Shaft

x-x	normal section
у-у	axial section
PCD	pitch diameter
OD	outside diameter
t _n -t _a	normal & axial pitch
Snm	normal tooth thickness on the pitch circle
γ_{m}	helix angle
α_0 - α_0 w	normal & axial pressure angle
h _k	addendum
hf	dedendum
m _n -m _s	normal & axial module
Z_1	number of threads
R-L	hand of thread-right or left
Z_2	number of teeth in mating worm gear

Profile of Worm Shaft

Profile K (ZK-worm)

ZE-TYPE Involute form profile of worm shaft profile

The profile is generated by the pressure angle of grinding wheel

ZN-TYPE A straight pressure angle in the normal plane

ZA-TYPE A straight pressure angle in the axial plane

Heavy Cutting Hob

Ordering Specifications

Performance

- Reduction of cycle time: Faster cutting with more hob teeth
- Reduction of hob wear: Reduced hob tooth flank wear and overload because of doubled hob cutting edge compared to a conventional hob
- More savings: Increased productivity through increased tool life

Most effective when cutting large module gears and gears with many teeth

Applicable range

Module 6.0~Module 32 (A bigger module is more effective)

▶The above specification for the hob may be changed at the customer's request.

Unit: mm

Module	Pressure Angle	Out Dia (dk)	Use Total Length (b₃)	Total Length (b₁)	Inner Diameter	No of Tooth
5	20°	150	210	220	32	16
6.5	20°	150	210	220	32	16
7	20°	160	210	220	32	16
7.5	20°	160	210	220	32	16
8	20°	160	210	220	32	16
8.5	20°	160	210	220	32	16
9	20°	170	230	240	32	16
9.5	20°	170	230	240	32	16
10	20°	170	230	240	40	16
11	20°	170	230	240	40	16
12	20°	190	252	262	40	16
13	20°	190	252	262	40	16
14	20°	210	252	262	40	16
15	20°	210	252	262	40	16
16	20°	240	288	288	40	16
17	20°	240	288	288	50	16
18	20°	260	318	318	50	16
19	20°	260	318	318	50	16
20	20°	290	360	360	50	16
22	20°	300	396	396	50	16
24	20°	320	400	400	50	16
25	20°	320	400	420	50	16
26	20°	320	400	420	60	16
28	20°	330	420	440	60	16
30	20°	330	420	450	60	16
32	20°	330	420	450	70	16

 $[\]blacktriangleright$ The above indicated specification for hob might be changed with customer's request.

Built-up Hob / Carbide Hob

Built-up Hob

The teeth and body are assembled separately and with different materials.

Advantages

- 1) The cutting condition is efficient controlled relief angle.
- 2) Cost effective with lower material price for body.
- 3) Useful for high speed cutting with controlled arbor.

Disadvantages

- 1) The manufacturing process is complex.
- 2) The out-diameter of built-up hob increases more than that of a standard gear hob.
- 3) It requires more flexible delivery terms than a standard gear hob.

Unit: mm

			01110-111111
Module	Out Dia	Total Length	Bore Dia
10	205	220	60
11	215	235	60
12	220	240	60
14	235	260	60
16	250	280	60
18	265	300	60
20	280	320	60
22	315	335	80
25	330	350	80
28	345	365	80
30	360	385	80
32	375	405	80

►The above indicated specification for hob might be changed with customer's request.

Carbide Hob

DTR newly developed carbide hobs can cut gears down powerfully at high speed which brings higher efficiency of production than conventional HSS hobbing.

Specification

module: m0.5~m6.0

accuracy class: DIN3968, class A/AA/AAA

Characteristics

- high cutting speeds
- short machining times
- a longer tool life than conventional HSS cutter
- time saving per piece for gear manufacture
- high productivity
- machining precision
- improved working environment by employing dry cutting
- high suitability for dry machining
- lower gear generation costs

Master Gear

Master Gear Profile

The Master gear is used for checking the precision of the gear, especially in the automobile and aerospace industries. It features high precision, long tool life, and excellent efficiency. When the master gear engages with the gear on the rolling fixtures, the value of tooth is inspected by a variety of indicators, chart or other indicating devices, etc.

Unit: mm

Module m	No of Teeth	PCD Diameter d₀	Inner Diameter d ₁	d ₂	d₃	d4, d5	Tooth Thickness b	b ₁	b ₂	b ₃	Out Diameter dk
1	48	48	22	-	-	40	12	17	4	-	50
1.25	64	80	32	-	-	70	20	25	4	-	82.5
1.5	54	81	32	-	-	70	20	25	4	-	84
1.75	46	80.5	32	-	-	70	20	25	4	-	84
2	40	80	32	-	-	70	20	25	4	-	84
2.25	36	81	32	-	-	70	20	25	4	-	85.5
2.5	32	80	32	-	-	70	20	25	4	-	85
2.75	42	115.5	32	-	-	95	30	36	5	-	121
3	38	114	32	-	-	95	30	36	5	-	120
3.25	36	117	32	-	-	95	30	36	5	-	123.5
3.5	32	112	32	-	-	95	30	36	5	-	119
3.75	30	112.5	32	-	-	95	30	36	5	-	120
4	28	112	32	-	-	95	30	36	5	-	120
4.5	34	153	40	70	110	130	40	46	5	10	162
5	30	150	40	70	110	130	40	46	5	10	160
5.5	28	154	40	70	110	130	40	46	5	10	165
6	26	156	40	70	110	130	40	46	5	10	168
7	28	196	60	90	110	170	60	66	5	12	210
8	24	192	60	90	110	170	60	66	5	12	208
9	22	198	60	90	110	170	60	66	5	12	216
10	20	200	60	90	110	170	60	66	5	12	220

Gear Shaper Cutter (Pinion Cutter)

Bell Type

Unit: mm

10	Туре	ı	Modul (M)	e	No. of Teeth(Z)	P.C.D do (M×z)	Hole Dia (d)	L	L ₁	L ₂	d ₁	a
0.9			0.75		67	50.25						
1		0.8			63	50.4		22	12	6.5		
1.25		0.9			56							
1.5												
1.75												
1.75		1.5						28	15			
10			1.75					20	'3			
10	50	2					19 050				28	3
100 100 100 100 1.55 1.75 1.25 100 1.55 1.25 100 1.55 1.25	30		2.25				13.030				-0	
3										8		
The color of the												
10		3										
100 100				3.25								
10												
100		—	3./5									
1		4	0.75									
1		0.0	0.75					22	42			
1		0.8	0.0					32	12	8		
1.25		1	0.9									
1.5												
75								38	15			
To To To To To To To To		1.5	1 7E									
75		-	1.75							}		
10												
10	75		2.25				31.742				50	3
3		2.5								4.0		
3.25			2.75							10		
1		3						38	18			
1												
4												
1		L.	3.75									
1		4										
1			4.5									
1.25												
1.5 67 100.5 1.75 58 101.5 2 50 100			_									
1.75 58 101.5 2												
2 50 100 100 2.25 45 101.25 2.5 40 100 2.75 37 101.75 3 3.25 31 100.75 3.5 29 101.5 3.75 27 101.25 4 25 100 4.5 23 103.5 5 21 105 5.5 19 104.5 6 18 108 100.5 100 100.5 100 100.5 100 100.5 100 100.5 100 100.5 100 100.5 100 100.5		1.5	1.75					38	18			
100 2.25 45 101.25 2.5 40 100 2.75 37 101.75 3 34 102 3.25 31 100.75 3.3.5 29 101.5 4 25 100 4.5 23 103.5 5 21 105 5.5 19 104.5 6 18 108		-	1./5									
2.5		2	2.25									
100		2 5	2.25							-		
100		2.5	2 75									
100 3.25 31 100.75 3.5 29 101.5 4 25 100 4.5 23 103.5 5 21 105 5.5 19 104.5 6 18 108 6.5 17 110.5		-	2.73									
3.5 29 101.5 3.75 27 101.25 4 25 100 4.5 23 103.5 5 21 105 5.5 19 104.5 6 18 108 6.5 17 110.5	100	-		3 25						10	95	15
3.75 27 101.25 4 25 100 4.5 23 103.5 5 21 105 5.5 19 104.5 6 18 108 6.5 17 110.5	100		3.5	3.23			(44.450)			10	05	4.5
4 25 100 4.5 23 103.5 5 21 105 5.5 19 104.5 6 18 108 6.5 17 110.5			5.5	3 75								
4.5 23 103.5 5 21 105 5.5 19 104.5 6 18 108 6.5 17 110.5		4		5.75				40	22			
5 21 105 5.5 19 104.5 6 18 108 6.5 17 110.5			4.5					70				
5.5 19 104.5 6 18 108 6.5 17 110.5		5	7.5									
6 18 108 6.5 17 110.5		Ť	5.5									
6.5 17 110.5		6	5.5									
		Ť		6.5								
			7	0.5	18	112						

Shank Type

Please indicate a screw specification of "M" when you order.

Туре		Module (M))	No. of Teeth(Z)	P.C.D do (M×z)	L	L ₁	M.T Shank No.	a
		0.75		34	25.5				
	0.8			32	25.8	63	10		
		0.9		28	25.2				
	1			25	25				
25	1.25			20	25		12	MT.2	2
25	1.5			17	25.5			X M10	
		1.75		15	26.25	80			
	2			13	26		15		
		2.25		12	27		13		
	2.5			10	25				
		0.75		51	38.75				
	0.8			48	38.4		12		
		0.9		43	38.7				
	1			38	38				
	1.25			31	38.75		15		
	1.5			28	38	100	'3	MT.3	
		1.75		22	38.5	100		X M12	
38	2			19	38				5
36		2.25		17	38.25				,
	2.5			16	40				
		2.75		14	38.5				
	3			13	38		18		
			3.25	13	42.25			MT.4	
		3.5	13	13	48.5	125		X M16	
			3.75	13	48.75	125		Fellow	
	4			13	52			Type M12	

Gear Shaper Cutter (Pinion Cutter)

Disk Type

*This cutter is for cutting a spur gear and the standard distance is indicated below.

Unit: mm

Туре		Modul (M)	e	No. of Teeth (Z)	P.C.D do (M×z)	Hole Dia (d)	L	L ₁	d₁	a
		0.75		100	75					
	0.8			94	75.2		12			
		0.9		84	75.8	1				
	1			75	75					
		1.25		60	75		15	6.5		
	1.5			50	75		15	0.5		
		1.75		43	75.25]				
	2			38	76					
75		2.25		34	76.5	31.742			50	3
/3	2.5			30	75	31.742			30)
		2.75		28	77					
	3			25	75			8		
			3.25	24	78		18			
		3.5		22	77					
			3.75	20	75					
	4			19	78]				
		4.5		17	76.5					
	5			15	75					
	1			100	100					
	1.25			80	100					
	1.5			67	100.5		18			
		1.75		58	101.5		10			
	2			50	100					
		2.25		45	101.25					
	2.5			40	100					
		2.75		37	101.75					
	3			34	102	24 742				
100			3.25	31	100.75	31.742 (44.450)		10	6.5	4.5
		3.5		29	101.5	(44.430)				
			3.75	27	101.25					
	4			25	100		22			
		4.5		23	103.5					
	5			20	100					
		5.5		19	104.5					
	6			17	102					
				16	104					
	7		15	105						

Unit: mm

Туре		Modul (M)	e	No. of Teeth (Z)	P.C.D do (M×z)	Hole Dia (d)	L	L ₁	d₁	a
	2			83	126					
		2.25		58	124		22			
	2.5			50	125					
		2.75		42	126.5					
	3			46	126					
			3.25	38	126.75					
		3.5		33	126					
125			3.75	34	127.5	44.450		10	85	4.5
123	4			32	128	44.430		10	65	4.5
		4.5		28	126		24			
	5			25	125					
		5.5		23	126.5					
	6			21	126					
			6.5	20	130					
		7		19	133					
	8			17	136					
	2			75	150					
		2.25		67	150.75					
				60	150		24			
		2.75		55	151.25					
	3			50	150					
			3.25	47	152.75					
		3.5		43	150.5					
			3.75	40	150					
150	4			38	152	44.450	26	12	85	4.5
150		4.5		34	153	44.430	20	12	65	4.5
	5			30	150					
		5.5		28	154					
	6			25	150					
			6.5	24	158					
		7		22	154					
	8			19	152		30			
		9		17	153					
	10			15	150					

Gear Shaper Cutter DIN Standard

C/T Class

Below Module 1

					PCD				
Terms		10~50 Class		50~125 Class			125~280 Class		
	AA	Α	В	AA	Α	В	AA	Α	В
Tooth Profile Error	2	2.5	3.5	2	2.5	3.5	2	2.5	3.5
Pressure Angle Error	2	2.5	3.5	2	2.5	3.5	2	2.5	3.5
Pressure Angle Form Error	2.5	3.5	5	2.5	3.5	5	2.5	3.5	5
Sigle Division Error	2.5	3.5	5	2.5	3.5	5	3	4	5.5
Adjacency Division Error	3	4.5	6	3.5	4.5	6.5	3.5	5	7
Accumulated Pitch Error	6.5	9	13	9	12	16	10	14	19
Run Out	6	9	11	7	10	12	8	10	14
Max Error	2.5	4	5	3.5	4.5	6	4.5	6	9

Module 3.55~6

					PCD				
Terms		10~50 Class		!	50~125 Class	j	125~280 Class		
	AA	Α	В	AA	Α	В	AA	Α	В
Tooth Profile Error	4	5	7	4	5	7	4	5	7
Pressure Angle Error	3	4	5.5	3	4	5.5	3	4	5.5
Pressure Angle Form Error	5	7	9	5	7	9	5	7	9
Sigle Division Error	3	4	6	3	4	6	3.5	4.5	7
Adjacency Division Error	4	5	8	4	5	8	4	5.5	9
Accumulated Pitch Error	8	12	16	10	16	20	12	18	25
Run Out	9	11	16	10	12	17	10	14	19
Max Error	4	6	8	5	7	10	5.5	8	11

∭ Module 1~2

					PCD					
Terms		10~50 Class		!	50~125 Class			125~280 Class		
	AA	Α	В	AA	Α	В	AA	Α	В	
Tooth Profile Error	2	3	4.5	2	3	4.5	2	3	4.5	
Pressure Angle Error	2	3	4	2	3	4	2	3	4	
Pressure Angle Form Error	3	4	6	3	4	6	3	4	6	
Sigle Division Error	2.5	3.5	5	2.5	4	5	3	4	5.5	
Adjacency Division Error	3	4.5	6	3	5	6	3.5	5	7	
Accumulated Pitch Error	7	10	14	9	14	18	11	16	20	
Run Out	7	10	12	8	10	14	9	11	16	
Max Error	3	4.5	6	3.5	5	7	4.5	6	8	

∭ Module 6~10

					PCD				
Terms	10~50 Class			50~125 Class			125~280 Class		
	AA	Α	В	AA	Α	В	AA	Α	В
Tooth Profile Error	5	7	10	5	7	10	5	7	10
Pressure Angle Error	3.5	5	7	3.5	5	7	3.5	5	7
Pressure Angle Form Error	6	8	12	6	8	12	6	8	12
Sigle Division Error	3.5	5	7	4	5.5	8	4	6	8
Adjacency Division Error	4.5	6	9	5	6.5	10	5	8	10
Accumulated Pitch Error	11	15	22	14	20	25	16	22	28
Run Out	11	15	19	13	17	22	14	19	25
Max Error	5.5	8	11	6	9	12	7	10	14

Module 2~3.55

					PCD				
Terms	10~50 Class			50~125 Class			125~280 Class		
	AA	Α	В	AA	Α	В	AA	Α	В
Tooth Profile Error	3	4	6	3	4	6	3	4	6
Pressure Angle Error	2	3	4.5	2	3	4.5	2	3	4.5
Pressure Angle Form Error	4	5	7	4	5	7	4	5	7
Sigle Division Error	2.5	3.5	5	2.5	3.5	5	3	4	6
Adjacency Division Error	3	4.5	6	3	4.5	6	3.5	5	8
Accumulated Pitch Error	8	11	16	10	14	20	12	16	22
Run Out	8	10	14	9	11	16	10	12	17
Max Error	3.5	5	7	4.5	6	8	5	7	10

Memo

Broach Cutter

Various Broach Cutters

Features

Round Broaches

These broaches perform precise broaching operations and do not require any pre-machining as in the case of other broaches.

Two kinds of round broaches are available, one for broaching only and the other with part burning.

Polygonal Broaches

These broaches perform precise and simple polygon profiles made by casting or forming.

Many kinds of polygon broaches are available such as square, rectangular, hexagonal or other polygon profiles.

Spline Broaches

An involute spline is generally used vs. a parallel side spline, as it transmits more power and rotates more smoothly.

To enhance a concentric degree, spline broaches with round teeth are also produced.

Serration Broaches

These broaches are generally used to cut a shaft and hole that is semi permanent. New models and involute serration broaches are available.

Special Broaches

Upon special request, makes it possible to do very complicated machining.

Broach Cutter

Ordering Specifications

	workpiece	sł	nank dia							allowable	
No.	bore dia	D	allowance (h8)(µ)	Α	В	W	С	н	E	Load (ton)	L
101	10~12.5	10	+0/-22	16	16	3	3	9	50	2	150
102	12.5~14.5	12	+0/-27	18	18	3.5	3	10	50	3	160
103	14.5~16.5	14	+0/-27	18	18	4	3	12	50	4	160
104	16.5~18.5	16	+0/-27	18	20	5	4	14	60	5	180
105	18.5~20.5	18	+0/-27	18	20	5.5	4	16	60	6	180
106	20.5~22.5	20	+0/-33	18	25	6.5	4	18	70	7	200
107	22.5~26	22	+0/-33	20	25	6.5	4	20	70	10	200
108	26~29	25	+0/-33	20	32	7	5	22	80	13	220
109	29~33	28	+0/-33	20	32	7	5	25	80	17	220
110	33~37	32	+0/-39	20	32	8	5	28	80	23	240
111	37~41	36	+0/-39	22	40	9	5	33	90	28	240
112	41~47	40	+0/-39	22	40	11	6	36	90	34	260
113	47~52	45	+0/-39	22	40	13	6	40	90	42	260
114	52~57	50	+0/-39	25	45	14	6	45	100	53	280
115	57~62	55	+0/-46	25	45	14	8	50	100	66	280
116	62~67	60	+0/-46	25	50	16	8	55	120	77	280
117	67~72	65	+0/-46	25	50	16	8	58	120	95	300
118	72~78	70	+0/-46	30	55	18	10	63	150	108	300
119	78	75	+0/-46	30	55	18	10	68	150	127	300

	worknings	sl	hank dia	Ne	ck dia.						Н	allowable	
No.	workpiece bore dia	D	allowance (h8) (μ)	D1	allowance (h10) (μ)	Α	В	С	Е	(d	σ ₉) (μ)	Load (ton)	L
201	10~12.5	10	+0/-22	7.5	+0/-58	12	25	3	50	8.5	-40/-76	1	110
202	12.5~14.5	12	+0/-27	9	+0/-58	12	25	3	50	10.5	-50/-93	2	120
203	14.5~16.5	14	+0/-27	10.5	+0/-70	12	25	3	50	12	-50/-93	3	120
204	16.5~18.5	16	+0/-27	12	+0/-70	15	30	4	60	13.5	-50/-93	4	130
205	18.5~20.5	18	+0/-27	13.5	+0/-70	15	30	4	60	15.0	-50/-93	5	130
206	20.5~22.5	20	+0/-33	15	+0/-70	15	30	4	70	17	-50/-93	7	140
207	22.5~26	22	+0/-33	16.5	+0/-70	15	30	4	70	18.5	-65/-117	8	140
208	26~29	25	+0/-33	19	+0/-84	18	35	5	80	21.5	-65/-117	11	160
209	29~33	28	+0/-33	21	+0/-84	18	35	5	80	24	-65/-117	13	160
210	33~37	32	+0/-39	24	+0/-84	18	35	5	80	27.5	-65/-117	18	180
211	37~41	36	+0/-39	27	+0/-84	18	35	5	90	31	-80/-142	22	180
212	41~47	40	+0/-39	30	+0/-84	20	40	6	90	34.5	-80/-142	28	200
213	47~52	45	+0/-39	34	+0/-100	20	40	6	90	39	-80/-142	36	200
214	52~57	50	+0/-39	38	+0/-100	20	40	6	100	43.5	-80/-142	45	220
215	57~62	55	+0/-46	41	+0/-100	25	50	8	100	48	-80/-142	55	220
216	62~67	60	+0/-46	45	+0/-100	25	50	8	120	53	-100/-174	63	240
217	67~72	65	+0/-46	48	+0/-100	25	50	8	120	57	-100/-174	72	240
218	72~78	70	+0/-46	52	+0/-100	30	50	10	150	60	-100/-174	85	260
219	78	75	+0/-46	56	+0/-100	30	50	10	150	65	-100/-174	100	260

DTR was the first company in South Korea to study PVD HARD Coating and continues its R & D in order to contribute to the further development of the surface processing industry. DTR supplies the best quality and variety of coatings which offer higher wear resistance, corrosion resistance, good color and better lubrication function.

History of DTR Coating

1988	 Developed PVD coating equipment Developed the first hard coating system in cutting industry
1995	 Developed quality inspection system Developed second PVD coating machine Agreement with Medium and Small Enterprises Technology Support Center in YonSei University. Expansion quality inspection system
2000	 Developed cooperative study with Technology Support Center. Obtained QS9000/ISO9001 Certification Provided equipment for company and university technology support; and collaborated on study system.
2003	Extension R&D washing line by DTR Upgrade Hybrid type coating Machine
2005	Cooperated with German coating company and equipped with R&D system Moved to new factory
2007	Adapted new coating equipment and developed R&D and own process
2008	 Start coating service Launched MAX Series brand Fostered cooperation with a university
2010	 Established a lower temperature system, Developed Si Nano coating. Established Coating R&D Institute, a technology connection with the Production Technology Institution in South Korea.

Summary of Coating

PVD coatings enhance heat and wear resistance of cutting tools: a high-performance coating applied to cutting tools using PVD technology offers advantages in cutting. It reduces abrasions and crater wear on the tools for conventional wet, dry cutting and high speed machining. Modern coating technology ensures smooth coatings, which reduce the friction between the chip flow and the tool.

X 3,000 Surface

The surface of coating layer As a dimple type structure, it brings outstanding lubrication.

X 15,000 Section

Multi Layer coating surface As a multi layer, it maximizes resistance from loading.

Coating Type and Plasma Principles

HCD Type

Making Electric Beam as putting high voltage on the Electric Gun around Ar condition. When the Titanium is melting, Ionized Titanium is released on the vacuum, it can be making strong and accuracy thin film as accelerating. Ion on the substrate of the stable field.

Hollow Cathod Discharge

ARC Type

After making strong electromagnetic field from specific electric current and magnetic on the Ionized Titanium with one autom can be sticking strongly on the material from the cathode on the vacuum. Evaporation Ion is possible to make strong adhesion thin film as following mutual spreading layer from the energy which is brought concentrative Arc currency(60~150A) of Arc discharge.

Kinds of DTR PVD Coating

MULTI-TIN

Multi-TiN coating is used for the mechanical industry such as dies, die-casting, molds, punches, and a range of metal stamping and forming tools. It performs well under lubricated machining. Based on the refining ingredient Cr which has strong resistance to high temperature, this coating is applied to the molding and sliding core for strength and hardness.

MAX-Cr

Based on refining Cr ingredient which has strong resistance from high temperature, this coating is applied molding and sliding core that needs strong hardness, high temperature and good lubrication.

MAX-I

MAX- I coating is the most common coating and it is wear resistant for general purpose; and a wide variety of materials and cutting conditions. It reduces friction and resists corrosion. TiN performs well when extended tool life and elevated feeds and speeds are required.

MAX-II

MAX- ${\rm I\hspace{-.1em}I}$ is designed for machining hard materials. It offers a higher hardness compared to TiN and can show a slightly lower friction coefficient in hardness applications. It is primarily used to achieve enhanced abrasive wear resistance.

MAX-Ⅲ

MAX- ${\rm I\hspace{-.1em}I\hspace{-.1em}I}$ coating is a multi-layer coating offering an optimized combination of TiN plus TiCN. This coating has a super-nitride layer which provides added strength. Multi-layered coatings can improve the hardness and toughness compared to single layers.

MAX-α

MAX- α is designed for use in high temperature (800°C) applications and difficult to machine materials. Speeds and feeds can be dramatically increased with TiALN, boosting productivity. In many cases, tools may be operated dry and this coating provides exceptional oxidation resistance and extreme hardness.

МАХ-В

MAX-B is an extremely hard, thin film coating that can be used in both wet and dry cutting conditions. It offers very high temperature (1000°C) resistance and performs well in corrosive environments and in sliding wear applications.

ΜΑΧ-γ

MAX-Y a multi layer coating which is compounded with TiALN and TiN. It offers good heat and wear resistance. This coating offers high durability as well as due to its gold color, it is useful to find wear conditions.

МАХ-Ө

 $\begin{array}{ll} \text{MAX-}\theta & \text{is a nano structure type} \\ \text{composition coating with Si as} \end{array}$ an ingredient. It has strong heat resistance under demanding working conditions. It forms a smooth grain and offers greater chip resistance under high lubrication conditions. Also, due to its nano structure it performs well during high speed dry processes.

ΜΑΧ-Ω

MAX-Ω with Gpa42 it performs well in extremely high temperature environments. It protects severely loaded edges against wear at extreme temperatures (1100°C).

Characteristic of Coating

Kinsa of	Mu l ti-TiN	MAX-Cr	MAX-I	MAX-II	MAX-Ⅲ	MAX	X—α	МАХ-β	МАХ-ү	МАХ-ө	ΜΑΧ-Ω
Coating Co. Spec	Mold	CrN	TiN	TiCN	TiCN+TiN	Nano TiAIN	Nano AlTiN	nc-Marvel Special Co	TiA I N+TiN	Super- Marvel Special Co Based Si ₃ N ₄	Hard-Marvel Special Co Based TiAIN
Coating type	HCD & ARC	ARC	HCD & ARC	HCD	HCD	ARC	ARC	ARC	ARC	ARC	ARC
Coating layer	Multi Layer	Mono Layer	Mono Layer	Multi Layer	Multi Layer	Multi Layer	Multi Layer	Multi Layer	Multi Layer	Nano-Multi Layer	Multi Layer
Vickers hardness (HV)	2200	2000	2200	2500~2800	2500~2800	3500	3500	3500	3500	3500	3600
Coefficient	0.4	0.15	0.4	0.4	0.4	0.2~0.4	0.2~0.3	0.2~0.3	0.2~0.3	0.3	below 0.2
Thickness(µm)	1~10	1~10	1~5	1~5	1~5	1~5	1~5	1~5	1~5	1~5	3~4
Possible Temp (℃)	600	750	600	500	600	800	900	1000	900	1100	1100
Color	GOLD	SILVER	GOLD	VIOLET GREY	GOLD	BLACK	BLACK	DARK GREY	GOLD	DARK BRONZE	DARK GREY
				Recommenda	tion method re	elated cutting c	ondition				
HOB (HSS)	Forming Tools	Forming Tools	General Cutting	Difficult to Machine Materials Cutting	Difficult to Machine Materials Cutting	High Speed Cutting	Highest Speed Cutting	General-Highest Speed Cutting (include difficult to machine materials)	High Speed Cutting	High Speed Cutting	General-Highest Speed Cutting (include difficult to machine materials)
Recommended	Vast Range	Vast Range	Vast Range	High Loading	High Loading	High Temperature	Middle-High Temperature	Low-Highest Temperature	High Temperature	Highest Temperature	Low-Highest Temperature
Cutting Condition	General Application	General Application	General Application	General Application	General Application	DIN AA Class	General Application	Application for difficult to Machine Materials	DIN AA Class	Application for difficult to Machine Materials	Application for difficult to Machine Materials
Speed (m/min)	-	•	80~100	90~130	90~130	100~180	150~200	100~220	100~180	150~230	80~230
Cutting Method	-	-	WET	WET	WET	DRY	DRY	WET, DRY	DRY	DRY	WET, DRY

Application of cutting condition

Heat-treatment

Comparing composition of raw material

Material Ingredient(%)	M35(SKH55)	M2(SKH51)	M42(SKH59)	DHS4	DHS1	DHS2	DHS3	DHS5
С	0.9	0.9	1.1	1.1	1.28	1.6	2.3	2.45
Si	0.5 and less			0.4				
Mn	0.4 and less			0.4				
Р	0.03 and less			0.03				
S	0.03 and less			0.03				
Cr	4	4.2	4	4.5	4.2	4.8	4.2	4
Ni	0.25 and less			0.25				
Cu	0.25 and less			0.25				
Мо	5	6.4	9.5	6.5	5	2	7	5
W	6	1.8	1.5	6.5	6.4	10.5	6.5	11
V	2	5	1.2	2.7	3.1	5	6.5	6.5
Со	5		8	5.5	8.5	8	10.5	16

Working Condition

Kinds of Steel	Size	Hardness	Kinds of Steel
HSS	350×350×450 (mm)	HRC56-68	M2(SKH51), M35(SKH55), M42(SKH59), CPM, REX15, REX41, REX45, ASP23, ASP30, HAP40, HAP50, SKH4H, YXM60
An alloy	350×350×450 (mm)	HRC40-63	SKD11, SKD12, SKD61, SKD5, SUS410, SUS416, SUS420, SUS440, B407, QR090, DC53, STAVAX, XW41
Structural steel	350×350×450 (mm)	HRC20-60	S45C, S55C, SCM4, SNCM8, SK3, SK5, SKS3, SUJ2, SUP, SCM420, 430, 440, SNC836, SNCM439, STD4
SUS	350×350×450 (mm)	HB210 below	SUS303, SUS304, SUS310, SUS316, SUS360

Heat-treatment Hardness Standard

Mot	erial	Heating		Temp	ering		Hardness
IVIAL	eriai	Temperature	1	2	3	4	naiuliess
M35(S	KH55)	1190~1200°C	560°C	560°C	560°C		65~66
MOE(CKLIEE)	M35/5KH55) M≥4						64~65
IVI35(5KH55)	M35(SKH55) M≤3.5						65~66
M42(SKH59)		1180~1190°C					66~67.5
DH	DHS2		560°C	560°C	560°C	560°C	66~67
DH	IS1	1180~1190°C					66~67
S2	90						69~70
FAX	X38						66~67.5
CPN	CPM45						66~67
DHS5							69~70
DHS3		1140~1150°C					67~67.5
Temperature	Management		Н	eating and Temperi	ng Temperature ±5°	,C	

Heat-treatment

Maintenance Time Heating

■HSS

Thickness(mm)	5	10	15	20	25	30	35	40	45	50
Time	1′5	2′5	3′5	4′5	5′	5′5	6′5	7'5	8′5	9′5

PM

Thickness(mm)	5	10	15	20	25	30	35	40	45	50
Time	2′	3′	4′	5′	5.5′	6′	7′	8′	9′	10′

Hob Specification Criteria

- ■Raw material for Tooth HSS, PM, CARBIDE
- ■Structure Solid Hob, Built-up Hob, Attached Tooth part
- ■The way of Formation and Conjunction Arbor(Bore), Shank, Straight, Flute, Rake angle, Single Start Hand, Multi Start Hand
- ■Items Involute, Spline, Serration, Sprocket, Timing, Worm, Cycloid, Ratchet, Sign curve, Special Tooth Profile(Pump, & etc.)
- ■Function and Use Shaving or Grinding, Finishing Purpose, Pre-shaving, Protuberance, Semi topping, Topping, BS tooth profile
- ■The way of Manufacture Grinding, Ungrinding

The Method of Hob Computation

- ■Normal pitch = Mn × π (Mn: NORMAL MODULE)
- ■Axial pitch = Mn / cos LA
- ■LEAD = Axial pitch × Number of start
- ■LA(Lead Angle) = sin-1(Mn×Number of start/HOB PCD)
- ■Cam amount(relief amount)=HOB OD×π ×tan(cam angle)/HOB NT
- ■Cam angle: Generally PA20° \rightarrow 10°, 14.5° \rightarrow 12°, 25° \rightarrow 9°
- ■Groove Lead=HOB PCD $\times\pi$ / tan LA
- ■Flute depth = Total tooth height of a hob + Cam amount + 1.5(mm)
- ■HOB'S RELIEF ANG = tan-1 (tan PA×tan Cam angle)

Hob Cutting Condition

- \blacksquare Cutting speed V = π DN/1000(m/min)
- π : Circle Ratio D(Hob OD), N(RPM)
- ■A factor of cutting speed
 - 1. Workability of material
 - 2. The module of gear
 - 3. Cutting depth
 - 4. Gear class
 - 5. Hob material
 - 6. Required hobbing time per piece
 - 7. Machine rigidity

Feed

- Finishing: 0.8~2.5mm/rev
- Roughing: 2.5~5mm/rev

Number of start	Feed	Hobbing Time
1	1	1
2	0.8	0.63
3	0.55	0.61
4	0.42	0.59
5	0.35	0.57
6	0.3	0.55

Cycle time of Hob

1. Hob Shift

The most vulnerable wear portion on the hob is the cutting edge due to the initial cut starting from the edge of the hob addendum. By shifting the hob in an axial direction, the wear amount can be distributed, and the tool can be used more efficiently.

Straight Flute Shift =
$$\frac{M \times \pi \times (Zh)}{NT \times cosLA}$$
 Helical Flute Shift =
$$\frac{M \times \pi \times (Zh) \times cosLA}{NT}$$

M: Module, NT: HOB teeth, LA: HOB lead angle, Zh: HOB number of start

2. Cycle Time

Increasing RPM for higher productivity

$$T = \frac{Z \times L}{RPM \times F \times Zh}$$

Z: Gear teeth, L: HOB moving distance(mm), RPM: HOB revolution,

F: Feed(mm/rev), Zh: HOB number of starts

Common Uses of a Hob

• The relation of chamfer, tooth thickness and tooth height

In the case of gears with equal tooth thickness but different numbers of teeth. The same hob will cut the gear with fewer teeth. The chamfer amount will decrease accordingly

Cutting Method of a Hob

Climb & Conventional

ltem	Climb cutting (up cutting)	Conventional cutting (down cutting)
Formulation of chip(less than 25°)	thicker chip	thinner chip
Basic shape of chip	same	same
friction force of cutting	small	big
The wear by sliding	small	big
The wear by cutting force	big	small
Hob profile roughness	bad	good
Workpiece Helix angle	less than 25 is good	more than 25 is good
The most worn part of a Hob	left part	right part
Cutting speed	possible to increase	impossible to increase
Cutting a huge gear	possible	impossible
The clamping condition of a work piece	strong	weak

Comparision of the Amount of Chamfer By Each Number of Teeth

1.M1 PA20" The chamfering distance of S-Top Hob by the number of teeth

		-1	14/0	Chamfering		-1.1	chai	mfering distan	ce	Actual applicated amount	
М	PA	The Number of Teeth	WD (2.25×M)	amount (0.1×M)	Addendum	Thickness of Tooth	Modification ramp	Chamfering angle		Modification ramp	Chamfering angle
		10					2.0658	58° 21′ 53″	58.3647222	2.0554	
		15					2.0846	57° 40′ 29″	57.6747222	2.0782	
		20					2.0964	57° 13′ 36″	57.2266667	2.092	
		25					2.1046	56° 54′ 37″	56.9102778	2.1014	
		30			1.25		2.1104	56° 40′ 27″	56.6741667	2.108	55°
		35					2.115	56° 29′ 27″	56.4908333	2.113	
		40					2.1186	56° 20′ 39″	56.3441667	2.117	
1	20°	45	2.25	0.1		1.5708	2.1214	56° 13′ 26″	56.2238889	2.1202	
		50					2.124	56° 7′ 26″	56.1238889	2.1228	
		55					2.126	56° 2′ 20″	56.0388889	2.125	
		60					2.1276	55° 57′ 58″	55.9661111	2.1268	
		70					2.1304	55° 50′ 51″	55.8475	2.1298	
		80					2.1326	55° 45′ 17″	55.7547222	2.1322	
		90					2.1344	55° 40′ 50″	55.6805556	2.134	
		100					2.1358	55° 37′ 10″	55.6194444	2.1356	

2.N5 PA20" The chamfering distance of S-Top Hob by the number of teeth

		T N 1	14/5	Chamfering		-1.1	cha	mfering distan	ce	Actual applicated amount	
M	PA	The Number of Teeth	WD (2.25×M)	amount (0.1×M)	Addendum	Thickness of Tooth	Modification ramp	Chamfering angle		Modification ramp	Chamfering angle
		10					10.329	58° 21′ 53″	58.3647222	10.277	
		15					10.423	57° 40′ 29″	57.6747222	10.391	
		20					10.482	57° 13′ 36″	57.2266667	10.46	
		25					10.523	56° 54′ 37″	56.9102778	10.507	
		30			6.25		10.552	56° 40′ 27″	56.6741667	10.54	
		35					10.575	56° 29′ 27″	56.4908333	10.565	
		40					10.593	56° 20′ 39″	56.3441667	10.585	
5	20°	45	11.25	0.5		7.8540	10.607	56° 13′ 26″	56.2238889	10.601	55°
		50					10.62	56° 7′ 26″	56.1238889	10.614	
		55					10.63	56° 2′ 20″	56.0388889	10.625	
		60					10.638	55° 57′ 58″	55.9661111	10.634	
		70					10.652	55° 50′ 51″	55.8475	10.649	
		80					10.663	55° 45′ 17"	55.7547222	10.661	
		90					10.672	55° 40′ 50″	55.6805556	10.67	
		100					10.679	55° 37′ 10″	55.6194444	10.678	

As referenced above, even though the gear has the same module and the change coefficient is 0, the chamfer distance of the hob is based on the gear's tooth because the chamfer diameter is not the same. The difference between the real chamfer part and root diameter's height is H1>H2, the tooth no. of gear is getting smaller even though it has same tooth height. The gear which has same module, same pressure angle, and same BS is changed the chamfer distance as following of no. of tooth because of the above situation. For the detail, refer to the above exact values.

HOB Resharpening

Resharpening time should be decided not to be late for better efficiency. The guidelines for determining the time to resharpen are as follows:

1. Wear amount

When the gear is cut by roughing or finishing process, the hob wear amount can be different. Generally, it is recommended to regrind per chart below

MODULE	Wear amount of teeth edge					
MODULE	Roughing	Finishing				
0.5	0.13~0.18	0.08~0.1				
0.5~1.5	0.15~0.25	0.1~0.2				
1.5~2.5	0.25~0.4	0.2~0.3				
2.5~6	0.4~0.5	0.25~0.4				
6~12	0.5~0.65	0.4~0.5				

2. Tool life

To preserve an optimum cutting condition and get long tool life, a tool should be resharpened after checking the wear amount. If you use a worn tool, the tool's cutting ability is reduced.

■During grinding, if you exceed the proper grinding amount an invisible grinding crack may occur so it makes the tooth separate and causes the hob to break. If you suspect that a grinding error has occurred, continue to inspect the teeth and if you notice any color variation, this could be an indication that a crack has formed and you should stop using the hob.

The Relation of Grinding Hob Teeth and Gear Profile

Gear Involute Curve Error Cause

The Cause of Error	The Cause of Error	Solution
Checked workpiece parts are different.	1. Hob Class Error 2. Hob Setting Error 3. Hob Arbor Error 4. Occur of Built-up-edge 5. Decreased Hob Spindle Class 6. Error of master worm	 Re-Grinding Check Setting Angle, Error, OD Switch arbor Re-Grinding Error, Metal Wear Back Lash, Bearing Crack
In case Shifting makes, there are tooth from change	1. Hob Class Error 2. Hob Setting Error 3. Hob Arbor Error 4. Hob Spindle Runout	 Re-Grinding Re-set Switch arbor Fix to spindle
There are difference between left and Right profile	Build up on Cutting Edge Re-Grinding Error Hord setting Angle Master worm Error Heavy Hob Wear	Re-Grinding Re-Grinding Check Setting Angle Check Back Lash Re-Grinding
While using multi-thread hob, tooth profiles are different	1. Hob Class Error 2. Hob Arbor Error 3. Hob Thread to Thread Error	• Back Lash, Cycle Error Pitch Error, Run out Bearing Crack
Every tooth profile is different	Master Worm Error Table Class Error Center Rotation Error	
	 4. Causes of Gear Profile Error. 1) During Set-up, bolts & nuts aren't tightened. 2) Head part of metal error. 3) Error of hob shift range setting. 4) Too much vibration on each center of datum plane. 5) Scratching on Work Center. 6) For helical, wrong feed result in bad lead and profile error. 7) Error and run-out of Differential gear. 8) Stamping on tooth profile on differential gear and key crack. 9) Tooth error of differential gear. 	

Considerations When Selecting Hobs

- 1. Bore Dia: Using standard table(Caution: Tolerance of inch and metric)
- 2. Outside Dia: Usually using the standard table, however Outside Dia can be increased for increasing productivity and fewer interruptions of machining (For HIGH AUTO MOTIVE VOLUMES: For M2.5, bore Multi-Gash(17~20N))
- 3. OAL(Overall Length): Per Massive volume, OAL can be increased up to maximum of Machine shift amount.
- 4. No. of Thread: Select threads depending on cut type finishing
- 5. No. of Flutes: Use 1 thread for Finish Cutting, and use multi thread for roughing, or semi-topping. (When the number of gear teeth is divisible by no: threads, a profile error may result.)
- 6. Rake angle: Normally don't need.
- 7. Hand: Same direction as gear's.
- 8. GL: If hob lead angle is over 5 degrees, use spiral gashes.
- 9. Class: Normally use DIN A (Gear:JIS4~5)
- 10. Material: If high speed of hardness is required, Powder Material is used. Otherwise, SKH55 is used.

Standard Hob Keyway Dimensions

1. A Type

Unit: mm

	ı)				F	Referene
Designation	Standard Sesignation	Allowance	Standard Sesignation	Allowance	Standard Sesignation	Allowance	r
8	8		8.9		2	0.16	0.4
10	10		11.5		3	+0.16 +0.06	0.4
13	13		14.6			10.00	0.6
16	16		17.7	+0.250	4	.0.10	0.0
19	19		21.1	0	5	+0.19 +0.07	1
22	22		24.1		6	10.07	
27	27	H5	29.8		7	.0.22	
32	32	113	34.8		8	+0.23 +0.08	1.2
40	40		43.5		10	+0.00	
50	50		53.5		12		1.6
60	60		64.2	+0.30	14	+0.275	1.0
70	70		75	0	16	+0.095	2
80	80		85.5		18		2
100	100		107.0		25	+0.32/+0.11	2.5

2. B Type

Unit: mm

			I		l		OTHE HIH
	[)	l	E		F	Referene
Designation	Standard Sesignation	Allowance	Standard Sesignation	Allowance	Standard Sesignation	Allowance	r
12.7	12.7		14.2		2.39		0.5
15.875	15.875		17.7			0.34	
19.05	19.05		20.9		3.18	+0.31 +0.13	0.8
22.225	22.225		24.1			+0.13	
25.4	25.4		28		6.35		1.2
26.988	26.988		29.8		7	+0.23/+0.08	1.2
31.75	31.75		35.2		7.92	+0.32/+0.14	
38.1	38.1	Н5	42.3	+0.250	9.52		
44.45	44.45	пэ	49.5	0	11.12		1.6
50.8	50.8		55.8		12.7		
63.5	63.5		69.4		15.87	0.00	
76.2	76.2		82.9		19.05	+0.89 +0.25	
88.9	88.9		98.8		22.22	10.25	2.4
101.6	101.6		111.5		25.4		
114.3	114.3		125.8		28.58		3.2
127	127		140.1		31.75		3.2

3. SHELL KEY

Unit: mm

Bor	e d	I	:	ŀ	1				
A type	B type	Allowance	Standard Sesignation	Allowance	Standard Sesignation	r	е	ℓ 1	С
22	22.225	10.4		6.3		1.2 0		7	0.6 +0.2
27	26.988	12.4	+0.110	7	0.2200	-0.3		8	.0.2
32	31.75	14.4	0	8	+0.2200 0	1.6 0	0.100	9	0.8 +0.2
40	38.1	16.4		9		_		10	1.0 +0.3
50	50.8	18.4		10		2.0 0		11	1.0 0
60	63.5	20.5	+0.1300	11.2	+0.2700			12	.02
80	76.2	24.5	0	14	0	2.5 0	0.125	15	1.2 +0.3

• e is Inner diameter maximum acceptance between center ex. of d-axle and F-axle.

Comparison Table of Gear and Hob Class

Gear	0	1	2	3	4	5	6	7	8
Inspection Machinery									
Measure Machinery									
Aircraft Machinery									
Printing Machinery									
Train Machinery									
Machine Tool									
Auto Mobile									
Geared Pump									
Rolling Mill									
Crane									
Farm Machinery									
Hand Machinery									
Internal Gear(Except Big Size Gear)									

Comparison Gear Class

As following Each country's GEAR standard, the class is like below table.

Standard							Class						
KS B 1405 (Korea)				0	1	2	3	4	5	6	7	8	
JIS B 1702 (Japan)				0	1	2	3	4	5	6	7	8	
DIN 3962 (German)	1	2	3	4	5	6	7	8	9	10	11	12	
GB (China)			3	4	5	6	7	8	9				
AGMA 390.03 (USA)	15	14	13	12	11	10	9	8	7	6	5	4	3
3SEIS (France)				Α	В	С	D	E					
BS 4 (England)					A ₁	A ₂	В	С	D				

Comparision of Hob Class

Classfi	ication	KS DIN		GOST	A G M A	B S
					AA	AA
	Ground	0	AA	AA	А	Α
Class	Ground	1	А	А	В	В
Class		2	В	В	С	
	Un-Ground	3	С	С	D	D
	On-Ground	3	D			

HOB CLASS TABLE(DIN 3968)

 1μ m= 0.001mm

			Acce	ptance Value	and Range o	f Acceptance	(μm)				
Division	Class	0.63 More 1.0 Below	1.0 More 1.6 Below	1.6 More 2.5 Below	2.5 More 4.0 Below	4.0 More 6.3 Below	6.3 More 10.0 Below	10.0 More 16.0 Below	16.0 More 25.0 Below	25.0 More 40.0 Below	
	AAA	4	4	4	4	4	4	5	5	5	
Swing of	AA	5	5	5	5	5	5	6	6	8	
OĎ	Α	5	5	5	6	8	10	12	16	20	
	В	6	6	6	8	10	12	16	20	25	
	AAA	2	2	2	2	2	3	4	4	5	
Swing of	AA	3	3	3	3	3	4	5	5	6	
Hub Side	Α	3	3	3	5	5	8	8	10	10	
	В	4	4	4	6	6	10	10	12	12	
Continue of	AAA	7	7	9	11	14	18	23	28	35	
Swing of	AA	10	10	12	16	20	25	32	40	50	
top side of Tooth	Α	12	16	20	25	32	40	50	63	80	
100th	В	25	32 40 50 63 80 100 125								
	AAA	7	7	9	11	14	18	23	28	35	
Center	AA	10	10	12	16	20	25	32	40	50	
Error.	Α	12	16								
	В	25	32	40	50	63	80	100	125	160	
Cin ala	AAA	± 7	± 7	± 9	± 11	± 14	± 18	± 23	± 28	± 35	
Single Division	AA	± 10	± 10	± 12	± 16	± 20	± 25	± 32	± 40	± 50	
Error	Α	± 12	± 16	± 20	± 25	± 32	± 40	± 50	± 63	± 80	
EHOI	В	± 25	± 32	± 40	± 50	± 63	± 80	± 100	± 125	± 100	
	AAA	7	7 7 9 11 14 18 23 28 35								
Adjacency	AA	10	10 10 12 16 20 25 32 40 50								
Division Error	A	12	16 20 25 32 40 50 63 80								
	В	25	5 32 40 50 63 80 100 125 160								
	AAA	14	14	18	23	28	35	44	56	70	
Accumulated	AA	20	20 25 32 40 50 63 80 100								
Division Error	Α	25	32	40	50	63	80	100	125	160	
	В	50	63	50	100	125	160	200	250	315	
Lead Error	AAA		# 100 123 100 200 250 315 100 200 250 315 100 250								

НОВ

В

± 140 ± 200

Acceptance Value and Range of Acceptance(µm)

Division	Class	0.63 More 1.0 Below	1.0 More 1.6 Below	1.6 More 2.5 Below	2.5 More 4.0 Below	4.0 More 6.3 Below	6.3 More 10.0 Below	10.0 More 16.0 Below	16.0 More 25.0 Below	25.0 More 40.0 Below
	AAA	4	4	4	6	7	9	10	13	15
Tooth profile	AA	6	6	6	8	10	12	14	18	22
Error	Α	10	11	12	14	16	20	25	32	40
	В	20	22	25	28	32	40	50	63	80
	AAA	-11	-11	-11	-14	18	-23	-28	- 35	-44
Tooth Thickness	AA	-16	-16	-16	-20	-25	-32	-40	- 50	- 63
Error	Α	- 25	-28	- 32	- 36	-40	-50	-63	-80	-100
	В	- 50	- 56	- 63	- 71	-80	-100	-125	-160	- 200
One	AAA	± 3	± 3	± 3	± 4	± 5	± 6	± 7	± 9	± 11
revolution	AA	± 4	± 4	± 4	± 5	± 6	± 80	± 10	± 12	± 16
Error	Α	± 6	± 7	± 8	± 9	± 10	± 12	± 16	± 20	± 25
EITOI	В	± 12	± 14	± 16	± 18	± 20	± 25	± 32	± 40	± 50
Three	AAA	4	4	4	6	7	9	10	13	15
revolution	AA	6	6	6	8	10	12	14	18	22
Error	Α	10	11	12	14	16	20	25	32	40
EIIOI	В	20	22	25	28	32	40	50	63	80
Pitch for a	AAA	3	3	3	4	5	6	7	9	11
line of action	AA	± 4	± 4	± 4	± 5	± 63	± 80	± 10	± 12	± 16
between two	Α	± 6	± 7	± 8	± 9	± 10	± 12	± 16	± 20	± 25
cutting tooth.	В	± 12	± 14	± 16	± 18	± 20	± 25	± 32	± 40	± 50
	AAA	6	6	6	7	9	11	14	18	23
Length of a line	AA	8	8	8	10	12	16	20	25	32
of action	Α	12	14	16	18	20	25	32	40	50
	В	25	28	32	36	40	50	63	80	100

Simulation of Tooth Profile

Certificate of Hob Quality

GEAR HOBS

DTR CORPORATION

Ordering Information for Gear & Involute Spline Hobs

Customer Name				
M DP × Pressure Angle				
Out Dia × Length × Bore Dia				DESIGN
Tool Material	Ар	oplicable Standard		

DESIGNED	CHECKED

Hob Details		Work Details			Mating Gear Details	
Tool No.		Name			No of Teeth	
Tooth Profile (See Below Figures)	General (Standard, Stub etc.)	No of Teeth			Outside Dia	
	Semi-Topping	Outside Dia			Center Distance	
	Pro-Shaving	Root Dia				
	Pre-Grinding	Whole Depth			Hobbing Condition	
	Pro-Skiving	Helix Angle		RH LH		
	Protuberance	Normal Tooth Thickness			Machine	
	Special	Given No of Teeth			Work Material	
No of Thread		Span Measurement			Hardness	
Lead Angle	RH LH	Pin Dia			Cutting Speed	m/min
No of Flute		Over Pin Distance			Revolution	rpm
Rake Angle		True Involute Form Dia			Feed	mm/rev
Keyway		Chamfer of Radius Direction		\perp	Cutting Method	Ciimb Conventional
Marking of Customer's Appointment		Finishing Stock on Tooth Thick	Shaving Stock		Others	
			Grinding Stock			
			Skving Stock			

Tool Size

